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Abstract

Latent variable models are ubiquitous in the exploratory analysis of neural population recordings, where
they allow researchers to summarize the activity of large populations of neurons in lower dimensional
‘latent’ spaces. Existing methods can generally be categorized into (i) Bayesian methods that facilitate
flexible incorporation of prior knowledge and uncertainty estimation, but which typically do not scale to
large datasets; and (ii) highly parameterized methods without explicit priors that scale better but often
struggle in the low-data regime. Here, we bridge this gap by developing a fully Bayesian yet scalable
version of Gaussian process factor analysis (bGPFA) which models neural data as arising from a set
of inferred latent processes with a prior that encourages smoothness over time. Additionally, bGPFA
uses automatic relevance determination to infer the dimensionality of neural activity directly from the
training data during optimization. To enable the analysis of continuous recordings without trial structure,
we introduce a novel variational inference strategy that scales near-linearly in time and also allows for
non-Gaussian noise models more appropriate for electrophysiological recordings. We apply bGPFA to
continuous recordings spanning 30 minutes with over 14 million data points from primate motor and
somatosensory cortices during a self-paced reaching task. We show that neural activity progresses from an
initial state at target onset to a reach-specific preparatory state well before movement onset. The distance
between these initial and preparatory latent states is predictive of reaction times across reaches, suggesting
that such preparatory dynamics have behavioral relevance despite the lack of externally imposed delay
periods. Additionally, bGPFA discovers latent processes that evolve over slow timescales on the order of
several seconds and contain complementary information about reaction time. These timescales are longer
than those revealed by methods which focus on individual movement epochs and may reflect fluctuations
in e.g. task engagement.

1 Introduction

The adult human brain contains upwards of 100 billion neurons (Azevedo et al., 2009). Yet many of our
day-to-day behaviors such as navigation, motor control and decision making can be described in much lower
dimensional spaces. Accordingly, recent studies across a range of cognitive and motor tasks have shown
that neural population activity can often be accurately summarised by the dynamics of a “latent state”
evolving in a low-dimensional space (Churchland et al., 2012; Pandarinath et al., 2018; Chaudhuri et al.,
2019; Minxha et al., 2020; Ecker et al., 2014). Inferring and investigating these latent processes can therefore
help us understand the underlying representations and computations implemented by the brain (Humphries,
2020). To this end, numerous latent variable models have been developed and used to analyze the activity of
populations of simultaneously recorded neurons. These models range from simple linear projections in the
form of PCA to sophisticated non-linear models using modern machine learning techniques (Jensen et al.,
2020; Pandarinath et al., 2018; Gao et al., 2016; Cunningham and Byron, 2014).

A popular latent variable model for neural data analysis is Gaussian process factor analysis (GPFA) which
has yielded insights into neural computations ranging from time tracking to movement preparation and
execution (Afshar et al., 2011; Sohn et al., 2019; Sauerbrei et al., 2020; Rutten et al., 2020). However, fitting
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Figure 1: Bayesian GPFA schematic. Bayesian GPFA places a Gaussian Process prior over the latent
states in each dimension as a function of time t (p(X|t); top left) as well as a linear prior over neural activity
as a function of each latent dimension (p(F |X); bottom left). Together with a stochastic noise process
p(Y |F ), which can be discrete for electrophysiological recordings, this forms a generative model that gives
rise to observations Y (middle). From the data and priors, bGPFA infers posterior latent states for each
latent dimension (p(X|Y ); top right) as well as a posterior predictive observation model for each neuron
(p(Ytest|Xtest,Y ); bottom right). When combined with automatic relevance determination, the model learns
to automatically discard superfluous latent dimensions by maximizing the log marginal likelihood of the data
(right, black vs. blue).

GPFA comes with a computational complexity of O(D3T 3) and a memory footprint O(D2T 2) for D latent
dimensions and T time bins. This prohibits the application of GPFA to time series longer than a few hundred
time bins without artificially chunking such time series into “pseudo-trials” and treating these as independent
samples. Additionally, canonical GPFA assumes a Gaussian noise model which is often inappropriate for
discrete and non-negative electrophysiological recordings (Gao et al., 2016). Here, we address these challenges
by formulating a scalable and fully Bayesian version of GPFA (bGPFA; Figure 1) with a computational
complexity of O(D2T +DT log T ) and a memory cost of O(D2T ). To do this, we introduce an efficiently
parameterized variational inference strategy that ensures scalability to long recordings and facilitates the use
of non-Gaussian noise models. Additionally, the Bayesian formulation provides a framework for principled
model selection based on approximate marginal likelihoods (Titsias and Lawrence, 2010). This allows us to
perform automatic relevance determination and thus fit a single model without prior assumptions about the
underlying dimensionality, which is instead inferred from the data itself (Neal, 2012; Bishop, 1999).

We validate our method on a small synthetic dataset with Gaussian noise where canonical GPFA is tractable,
and we show that bGPFA has comparable performance without requiring cross-validation to select the
latent dimensionality. bGPFA also naturally extends to non-Gaussian data where it recovers ground truth
parameters and latent trajectories. We then apply bGPFA to longitudinal, multi-area recordings from primary
motor (M1) and sensory (S1) areas in a monkey self-paced reaching task spanning 30 minutes. bGPFA readily
scales to such datasets, and the inferred latent trajectories improve decoding of kinematic variables compared
to the raw data. This decoding improves further when taking into account the temporal offset between
motor planning encoded by M1 and feedback encoded by S1. We also show that the latent trajectories for
M1 converge to consistent regions of state space for a given reach direction at the onset of each individual
reach. Importantly, the distance in latent space to this preparatory state from the state at target onset is
predictive of reaction times across reaches, similar to previous results in a task that includes an explicit
‘motor preparation epoch’ where the subject is not allowed to move (Afshar et al., 2011). This illustrates the
functional relevance of such preparatory activity and suggests that motor preparation takes place even when
the task lacks well-defined trial structure and externally imposed delay periods, consistent with findings by
Lara et al. (2018) and Zimnik and Churchland (2021). Finally, we analyze the task relevance of slow latent
processes identified by bGPFA which evolve on timescales of several seconds, much larger than the timescales
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that can be resolved by methods designed for trial-structured data. We find that some of these slow processes
are also predictive of reaction time across reaches, and we hypothesize that they reflect task engagement
which varies over the course of several reaches.

2 Method

In the following, we use the notation A to refer to the matrix with elements aij . We use ak to refer to the
kth row or column of A with an index running from 1 to K, represented as a column vector.

2.1 Generative model

Latent variable models for neural recordings typically model the neural activity Y ∈ RN×T of N neurons at
times t ∈ RT as arising from shared fluctuations in D latent variables X ∈ RD×T . Specifically, the probability
of a given recording can be written as

p(Y |t) =
∫
p(Y |F ) p(F |X) p(X|t) dF dX, (1)

where F ∈ RN×T are intermediate, neuron-specific variables that can often be thought of as firing rates or a
similar notion of noise-free activity. For example, GPFA (Yu et al., 2009) specifies

p(Y |F ) =
∏
n,t

N (ynt; fnt, σ2
n) (2)

p(F |X) = δ(F −CX) (3)

p(X|t) =
∏
d

N (xd; 0,Kd) with Kd = kd(t, t)) (4)

That is, the prior over the dth latent function xd(t) is a Gaussian process (Rasmussen and Williams, 1996)
with covariance function kd(·, ·) (usually a radial basis function), and the observation model p(Y |X) is given
by a parametric linear transformation with independent Gaussian noise.

In this work, we additionally introduce a prior distribution over the mixing matrix C ∈ RN×D with
hyperparameters specific to each latent dimension. This allows us to learn an appropriate latent dimensionality
for a given dataset using automatic relevance determination (ARD) similar to previous work in Bayesian
PCA (Appendix H; Bishop, 1999) rather than relying on cross-validation or ad-hoc thresholds of variance
explained. Unlike in standard GPFA, the log marginal likelihood (Equation 1) becomes intractable with this
prior. We therefore develop a novel variational inference strategy (Wainwright and Jordan, 2008) which also
(i) provides a scalable implementation appropriate for long continuous neural recordings, and (ii) extends the
model to general non-Gaussian likelihoods better suited for discrete spike counts.

In this new framework, which we call Bayesian GPFA (bGPFA), we use a Gaussian prior over C of the
form cnd ∼ N (0, s2

d), where sd is a scale parameter associated with latent dimension d. Integrating C out in
Equation 3 then yields the following observation model:

p(F |X) =
∏
n

N (fn; 0,XTS2X), with S = diag(s1, . . . , sD). (5)

Moreover, we use a general noise model p(Y |F ) =
∏
n,t p(ynt|fnt) where p(ynt|fnt) is any distribution for

which we can evaluate its density.

2.2 Variational inference and learning

To train the model and infer both X and F from the data Y , we use a nested variational approach. It is
intractable to compute log p(Y |t) (Equation 1) analytically for bGPFA, and we therefore introduce a lower
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bound on log p(Y |t) at the outer level and another one on log p(Y |X) at the inner level. These lower bounds
are constructed from approximations to the posterior distributions over latents (X) and noise-free activity
(F ) respectively.

Distribution over latents At the outer level, we introduce a variational distribution q(X) over latents
and construct an evidence lower bound (ELBO; Wainwright and Jordan, 2008) on the log marginal likelihood
of Equation 1:

log p(Y |t) ≥ L := Eq(X) [log p(Y |X)]−KL [q(X)||p(X|t)] . (6)
Conveniently, maximizing this lower bound is equivalent to minimizing KL [q(X)||p(X|Y )] and thus also
yields an approximation to the posterior over latents in the form of q(X). We estimate the first term of the
ELBO using Monte Carlo samples from q(X) and compute the KL term analytically.

Here, we use a so-called whitened parameterization of q(X) (Hensman et al., 2015b) that is both expressive
and scalable to large datasets:

q(X) =
D∏
d=1
N (xd;µd,Σd) with µd = K

1
2
d νd and Σd = K

1
2
d ΛdΛ

T
dK

1
2
d

T

(7)

where K
1
2
d is any square root of the prior covariance matrix Kd, and νd ∈ RT is a vector of variational

parameters to be optimized. Λd ∈ RT×T is a positive semi-definite variational matrix whose structure is
chosen carefully so that its squared Frobenius norm, log determinant, and matrix-vector products can all be
computed efficiently which facilitates the evaluation of Equations 8 and 9. This whitened parameterization
has several advantages. First, it does not place probability mass where the prior itself does not. In addition to
stabilizing learning (Murray and Adams, 2010), this also guarantees that the posterior is temporally smooth
for a smooth prior. Second, the KL term in Equation 6 simplifies to

KL[q(X)||p(X|t)] = 1
2
∑
d

(
‖Λd‖2

F − 2 log |Λd|+ ||νd||2 − T
)
. (8)

Third, q(X) can be sampled efficiently via a differentiable transform (i.e. the reparameterization trick)
provided that fast differentiable K

1
2
d v and Λdv products are available for any vector v:

x
(m)
d = K

1
2
d (νd + Λdηd) with ηd ∼ N (0, I), (9)

where x(m)
d ∼ q(xd). This is important to form a Monte Carlo estimate of Eq(X) [log p(Y |X)].

To avoid the challenging computation of K
1
2
d v for general Kd (Allen et al., 2000), we directly parameterize

K
1
2
d , the positive definite square root of K, which implicitly defines the prior covariance function kd(·, ·). In

this work we use an RBF kernel for Kd and give the expression for K
1
2
d in Appendix E. Additionally, we use

Toeplitz acceleration methods to compute K
1
2
d v products in O(T log T ) time and with O(T ) memory cost

(Wilson et al., 2015; Rutten et al., 2020). We implement and compare different choices of Λd in Appendix E.
For the experiments in this work, we use the following parameterization:

Λd = ΨdCd (10)

where Ψd is diagonal with positive entries and Cd is circulant, symmetric, and positive definite. This
parameterization enables cheap computation of KL divergences and matrix-vector products while maintaining
sufficient expressiveness (Appendix E).

Distribution over neural activity Evaluating log p(Y |X) =
∑
n log p(yn|X) for each sample drawn

from q(X) is intractable for general noise models. Thus, we further lower-bound the ELBO of Equation 6 by
introducing an approximation q(fn|X) to the posterior p(fn|yn,X):

log p(yn|X) ≥ Eq(fn|X) [log p(yn|fn)]−KL [q(fn|X)||p(fn|X)] . (11)
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We repeat the whitened variational strategy described at the outer level by writing

q(fn|X) = N (fn; µ̂n, Σ̂n) with µ̂n = K̂
1
2 ν̂n and Σ̂n = K̂

1
2LnL

T
nK̂

1
2 , (12)

where ν̂n ∈ RD is a neuron-specific vector of variational parameters to be optimized along with a lower-
triangular matrix Ln ∈ RD×D; and K̂ denotes the covariance matrix of p(f |X), whose square root K̂ 1

2 =
XTS follows from Equation 5. The low-rank structure of K̂ enables cheap matrix-vector products and KL
divergences:

KL[q(fn|X)||p(fn|X)] = 1
2
(
‖Ln‖2

F − 2 log |Ln|+ ||ν̂d||2 −D
)
. (13)

Note that the KL divergence does not depend on X in this whitened parameterization (Appendix G).
Moreover, q(fn|X) in Equation 12 has the form of the exact posterior when the noise model is Gaussian
(Appendix F), and it is equivalent to a stochastic variational inducing point approximation (Hensman et al.,
2015a) for general noise models (Appendix G).

Finally, we need to compute the first term in Equation 11:

Eq(fn|X) [log p(yn|fn)] =
∑
t

Eq(fnt|X) [log p(ynt|fnt)] . (14)

Each term in this sum is simply a 1-dimensional Gaussian expectation which can be computed analytically
in the case of Gaussian or Poisson noise (with an exponential link function), and otherwise approximated
efficiently using Gauss-Hermite quadrature (Appendix J; Hensman et al., 2015a).

2.3 Summary of the algorithm

Putting Section 2.1 and Section 2.2 together, optimization proceeds at each iteration by drawing M Monte
Carlo samples {Xm}M1 from q(X) and estimating the overall ELBO as:

L = 1
M

∑
Xm∼q(X)

[∑
n,t

Eq(fnt|Xm) [log p(ynt|fnt)]
]

−
∑
n

KL [q(fn)||p(fn)]−
∑
d

KL [q(xd)||p(xd)] , (15)

where the expectation over q(fnt|X) is evaluated analytically or using Gauss-Hermite quadrature depending
on the noise model (Appendix J). We maximize L using stochastic gradient ascent with Adam (Kingma
and Ba, 2015). This has a total computational time complexity of O(MNTD2 +MDT log T ) and memory
complexity of O(MNTD2) where N is the number of neurons, T the number of time points, and D the
latent dimensionality. For large datasets such as the monkey reaching data in Section 3.2, we compute
gradients using mini-batches across time to mitigate the memory costs; that is, gradients for the sum over
t in Equation 15 are computed in multiple passes. The algorithm is described in pseudocode with further
implementation and computational details in Appendix K. The model learned by bGPFA can subsequently
be used for predictions on held-out data by conditioning on partial observations as used for cross-validation
in Section 3.1 and discussed in Appendix L. Latent dimensions that have been ‘discarded’ by automatic
relevance determination will automatically have negligible contributions to the resulting posterior predictive
distribution since the prior scale parameters sd are approximately zero for these dimensions (see Appendix H
for details).

3 Experiments and results

In this section we apply bGPFA with automatic relevance determination to synthetic and biological data in
order to validate the method and highlight its utility for neuroscience research.
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Figure 2: Bayesian GPFA applied to synthetic data. (a) Log likelihoods of factor analysis (yellow)
and GPFA (green) and ELBO of Bayesian GPFA without ARD (blue) fitted to synthetic data with a ground
truth dimensionality of three for different model dimensionalities. FA and GPFA exhibit monotonically
increasing marginal likelihoods while the ELBO of Bayesian GPFA has a maximum corresponding to the
true latent dimensionality. bGPFA with ARD recovered this three-dimensional latent space as well as the
optimum ELBO of bGPFA without ARD (black dashed line). (b) Cross-validated prediction errors for the
models in (a) (Appendix L). The minimum is at D? = 3 for all methods, consistent with the maximum of the
bGPFA ELBO without ARD in (a). bGPFA with ARD recovered the performance of the optimal bGPFA
model without requiring a search over latent dimensionalities. Inspection of the learned prior scales {sd} and
posterior mean parameters ||νd||22 (inset) indicates that ARD retained only D? = 3 informative dimensions
(top right) and discarded the other 7 dimensions (bottom left). Shadings in (a) and (b) indicate ±2 stdev.
across 10 model fits. (c) Learned hyperparameters of bGPFA with ARD and either Gaussian, Poisson or
negative binomial noise models fitted to two-dimensional synthetic datasets with observations drawn from
the corresponding noise models (Appendix J). The hyperparameters clustered into two groups of informative
(top right) and non-informative (bottom left) dimensions (Appendix I). (d) Latent trajectory in the space of
the two most informative dimensions (c.f. (c)) for each model with the ground truth shown in black. (e) The
overdispersion parameter κn for each neuron learned in the negative binomial model, plotted against the
ground truth (Appendix J). Solid line indicates y = x; note that κn → ∞ corresponds to a Poisson noise
model.

3.1 Synthetic data

We first generated an example dataset from the GPFA generative model (Equations 2-4) with a true latent
dimensionality of 3. We proceeded to fit both factor analysis (FA), GPFA, and bGPFA with different latent
dimensionalities D ∈ [1, 10]. Here, we fitted bGPFA without automatic relevance determination such that
sd = s∀d. As expected, the marginal likelihoods increased monotonically with D for both FA and GPFA
(Figure 2a; Appendix H). In contrast, the bGPFA ELBO reached its optimum value at the true latent
dimensionality D? = 3. This is a manifestation of “Occam’s razor”, whereby fully Bayesian approaches favor
the simplest model that adequately explains the data Y (MacKay, 2003). This is also confirmed by the
cross-validated predictive performance which was optimal at D = 3 for all methods (Figure 2b). Notably,
the introduction of ARD parameters {sd} in bGPFA allowed us to fit a single model with large D = 10.
This model simultaneously achieved both the maximum ELBO and minimum test error obtained by bGPFA
without ARD at D? = 3 (Figure 2a and b, blue) without a priori assumptions about the latent dimensionality
or the need to perform extensive cross-validation. Consistent with the ground truth generative process, only
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3 of the scale parameters sd remained well above zero after training (Figure 2b, inset).

We then proceeded to apply bGPFA (D = 10) to an example dataset drawn using Equations 4 and 5 with
a ground truth dimensionality D? = 2, and either Gaussian, Poisson, or negative binomial noise. For all
three datasets, the learned parameters clustered into a group of two latent dimensions with high information
content (Appendix I) and a group of eight uninformative dimensions, consistent with the generative process
(Figure 2c). In each case, we extracted the inferred latent trajectories corresponding to the informative
dimensions and found that they recapitulated the ground truth up to a linear transformation (Figure 2d).
Fitting flexible noise models such as the negative binomial model is important because neural firing patterns
are known to be overdispersed in many contexts (Tomko and Crapper, 1974; Fenton and Muller, 1998; Azouz
and Gray, 1999). However, it is often unclear how much of that overdispersion should be attributed to
common fluctuations in hidden latent variables (X in our model) compared to private noise processes in single
neurons (Low et al., 2018). In our synthetic data with negative binomial noise, we could accurately recover
the single-neuron overdispersion parameters (Figure 2e; Appendix J), suggesting that such unsupervised
models have the capacity to resolve overdispersion due to private and shared processes.

In summary, bGPFA provides a flexible method for inferring both latent dimensionalities, latent trajectories,
and heterogeneous single-neuron parameters in an unsupervised manner. In the next section, we show that
the scalability of the model and its interpretable parameters facilitate the analysis of large neural population
recordings.

3.2 Primate recordings

In this section, we apply bGPFA to biological data recorded from a rhesus macaque during a self-paced reaching
task with continuous recordings spanning 30 minutes (O’Doherty et al., 2017; Makin et al., 2018; Figure 3a).
The continuous nature of these recordings as one long trial makes it a challenging dataset for existing analysis
methods that explicitly require the availability of many trials per experimental condition (Pandarinath et al.,
2018), and poses computational challenges to Gaussian process-based methods that cannot handle long time
series (Yu et al., 2009). While the ad-hoc division of continuous recordings into surrogate trials can still
enable the use of these methods (Keshtkaran et al., 2021), here we show that our formulation of bGPFA
readily applies to long continuous recordings. We fitted bGPFA with a negative binomial noise model to
recordings from both primary motor cortex (M1) and primary somatosensory cortex (S1). For all analyses, we
used a single recording session (indy_20160426, as in Keshtkaran et al., 2021), excluded neurons with overall
firing rates below 2 Hz, and binned data at 25 ms resolution. This resulted in a data array Y ∈ R200×70482

(130 M1 neurons and 70 S1 neurons).

We first fitted bGPFA independently to the M1 and S1 sub-populations with D = 25 latent dimensions. In
this case, ARD retained 20 (M1) and 13 (S1) dimensions (Figure 3b). We then proceeded to train a linear
decoder to predict hand kinematics in the form of x and y hand velocities from either the inferred firing rates
or the raw data convolved with a 50 ms Gaussian kernel (Keshtkaran et al., 2021; Appendix L). We found that
the model learned by bGPFA predicted kinematics better than the convolved spike trains, suggesting that (i)
the latent space accurately captures kinematic representations, and (ii) the denoising and data-sharing across
time in bGPFA aids decodability beyond simple smoothing of neural activity. Interestingly, by repeating this
decoding analysis with an artificially imposed delay between neural activity and decoded behavior, we found
that neurons in S1 predominantly encoded current behavior while neurons in M1 encoded a motor plan that
predicted kinematics 100-150 ms into the future (Figure 3b). This is consistent with the motor neuroscience
literature suggesting that M1 functions as a dynamical system driving behavior via downstream effectors
(Churchland et al., 2012).

We then fitted bGPFA to the entire dataset including both M1 and S1 neurons and found that kinematic
predictions improved over individual M1- and S1-based predictions (Figure 3b). In this analysis, the decoding
performance as a function of delay between neural activity and behavior exhibited a broader peak than
for the single-region decoding. We hypothesized that this broad peak reflects the fact that these neural
populations encode both current behavior in S1 as well as future behavior in M1 (Figure 3c). Indeed when we
took this offset into account by shifting all M1 spike times by +100 ms and retraining the model, decoding
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Figure 3: Bayesian GPFA applied to primate data. (a) Schematic illustration of the self-paced reaching
task. When a target on a 17x8 grid is reached (arrows), a new target lights up on the screen (colours),
selected at random from the remaining targets (8x8 grid shown for clarity). In several analyses, we classify
movements according to reach angle measured relative to horizontal (θ1, θ2). (b) Learned mean and scale
parameters for the bGPFA models. Small prior scales sd and posterior mean parameters (||νd||22) indicate
uninformative dimensions (Appendix I). (c) We applied bGPFA to monkey M1 and S1 data during the
task and trained a linear model to decode kinematics from firing rates predicted from the inferred latent
trajectories with different delays between latent states and kinematics. Neural activity was most predictive
of future behavior in M1 (black) and current behavior in S1 (blue). Dashed lines indicate decoding from
the raw data convolved with a Gaussian filter. (d) Decoding from bGPFA applied to the combined M1
and S1 data (cyan). Performance improved further when decoding from latent trajectories inferred from
data where M1 activity was shifted by 100 ms relative to S1 activity (green). (e) Example trajectories
in the two most informative latent dimensions for five rightward reaches (grey) and five leftward reaches
(red). Trajectories are plotted from the appearance of the stimulus until movement onset (circles). During
‘movement preparation’, the latent trajectories move towards a consistent region of latent state space for
each reach direction. (f) Similarity matrix of the latent state at stimulus onset showing no obvious structure
(left) and 75 ms prior to movement onset showing modulation by reach direction (right). (g) Reaction time
plotted against Euclidean distance between the latent state at target onset and the mean preparatory state
for the corresponding reach direction (ρ = 0.424).

performance increased (69.22%± 0.06 vs. 67.84%± 0.07 mean ± sem variance explained across ten model fits;
Appendix L). Additionally, the shifted data exhibited a narrower decoding peak now attained for near-zero
delay between kinematics and latent trajectories (Figure 3d). Consistent with the improved kinematic
decoding, we also found that shifting M1 spikes by 100 ms increased the ELBO per neuron (−34 882.77± 0.39
vs. −34 893.18 ± 0.71) and approximately minimized the linear dimensionality of the data (Appendix D;
Recanatesi et al., 2019).

We next wondered if bGPFA could be used to reveal putative motor preparation processes, which is non-trivial
due to the lack of trial structure and well-defined preparatory epochs. We partitioned the data post-hoc into
individual ‘reaches’, each consisting of a period of time where the target location remained constant. For
these analyses, we only considered ‘successful’ reaches where the monkey eventually moved to the target
location (Appendix C), and we defined movement onset as the first time during a reach where the cursor
speed exceeded a low threshold (Appendix A). We began by visualizing the latent processes inferred by
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bGPFA as they unfolded prior to movement onset in each reach epoch. For visualization purposes, we ranked
the latent dimensions based on their learned prior scales (a measure of variance explained; Appendix I) and
selected the first two. Prior to movement onset, the latent trajectories tended to progress from their initial
location at target onset towards reach-specific regions of state space (see example trials in Figure 3e for
leftward and rightward reaches). To quantify this phenomenon, we computed pairwise similarities between
latent states across all 681 reaches, during (i) stimulus onset and (ii) 75 ms before movement onset (chosen
such that it is well before any detectable movement; Appendix A). We defined similarity as the negative
Euclidean distance between latent states and restricted the analysis to ‘fast’ latent dimensions with timescales
smaller than 200 ms to study this putatively fast process. When plotted as a function of reach direction,
the latent similarities at target onset showed little discernable structure (Figure 3f, left). In contrast, the
pairwise similarities became strongly structured 75 ms before movement onset where neighboring reach
directions were associated with similar preparatory latent states (Figure 3f, right). Similar albeit noisier
results were found when using factor analysis instead of bGPFA (Appendix A). These findings are consistent
with previous reports of monkey M1 partitioning preparatory and movement-related activity into distinct
subspaces (Elsayed et al., 2016; Lara et al., 2018), as well as with the analogous finding that a ‘relative target’
subspace is active before a ‘movement subspace’ in previous analyses of this particular dataset (Keshtkaran
et al., 2021).

Previous work on delayed reaches has shown that monkeys start reaching earlier when the neural state
attained at the time of the go cue – which marks the end of a delay period with a known reach direction – is
close to an “optimal subspace” (Afshar et al., 2011; Kao et al., 2021). We wondered if a similar effect takes
place during continuous, self-initiated reaching in the absence of explicit delay periods. Based on Figure 3e, we
hypothesized that the monkey should start moving earlier if, at the time the next target is presented, its latent
state is already close to the mean preparatory state for the required next movement direction. To test this,
we extracted the mean preparatory state 75 ms prior to movement onset (as above) for each reach direction in
the dataset. We found that the distance between the latent state at target onset and the corresponding mean
preparatory state was strongly predictive of reaction time (RT; Figure 3g, Pearson ρ = 0.424, p = 3× 10−29).
Such a correlation was also weakly present with factor analysis (ρ = 0.21, p = 9× 10−8) but not detectable
in the raw data (ρ = 0.02, p = 0.6). We also verified that the strong correlation found with bGPFA was
not an artifact of the temporal correlations introduced by the prior (Appendix B). Taken together, our
results suggest that motor preparation is an important part of reaching movements even in an unconstrained
self-paced task. Additionally, we showed that bGPFA captures such behaviorally relevant latent dynamics
better than simpler alternatives, and our scalable implementation enables its use on the large continuous
reaching dataset analysed here.

Finally we noted that some latent dimensions had long timescales on the order of 2 seconds, which is longer
than the timescale of individual reaches (1-2 seconds; Appendix B). We hypothesized that these slow dynamics
might reflect motivation or task engagement. Consistent with this hypothesis, we found that the slowest
latent process (τ = 2.1 s) was correlated with reaction time during successful reaches (Pearson ρ = 0.383,
p = 1.1× 10−23) and strongly modulated during a longer period of time where the monkey did not reach to
any targets (Appendix C). Interestingly, the information contained about reaction time in this long timescale
latent dimension was largely complementary to that encoded by the distance to preparatory states in the
‘fast’ dimensions (Appendix B). We thus find that bGPFA is capable of capturing not only single-reach
dynamics and preparatory activity but also processes on longer timescales that would be difficult to identify
with methods designed for the analysis of many shorter trials.

4 Discussion

Related work The generative model of bGPFA can be considered an extension of the canonical GPFA
model proposed by Yu et al. (2009) to include a Gaussian prior over the loading matrix C (Section 2.1). In
this view, bGPFA is to GPFA what Bayesian PCA is to PCA (Bishop, 1999); in particular, it facilitates
automatic relevance determination to infer the dimensionality of the latent space from data (Bishop, 1999;
Neal, 2012; Titsias and Lawrence, 2010). Additionally, we utilize advances in variational inference (Kingma
and Welling, 2014; Rezende et al., 2014) to make the algorithm scalable to the large datasets recorded
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in modern neuroscience. In particular, we contribute a novel form of circulant variational GP posterior
that is both accurate and scalable. Similar to previous work by Duncker and Sahani (2018) and Zhao and
Park (2017), variational inference also facilitates the use of arbitrary observation noise models, including
non-Gaussian models more appropriate for electrophysiological recordings. Furthermore, our method is an
extension of work on Gaussian process latent variable models (GPLVMs) (Lawrence and Hyvärinen, 2005;
Titsias and Lawrence, 2010) which have recently found use in the neuroscience literature as a way of modelling
flexible, nonlinear tuning curves (Wu et al., 2017; Jensen et al., 2020). This is because integrating out the
loading matrix in p(Y |X) with a Gaussian prior gives rise to a Gaussian process, here with a linear kernel.
The low-rank structure of this linear kernel yields computationally cheap likelihoods, and our variational
approach is equivalent to the sparse inducing point approximation used in the stochastic variational GP
(SVGP) framework (Hensman et al., 2013, 2015a). In particular, our variational posterior is the same as that
which would arise in SVGP with at least D inducing points irrespective of where those inducing points are
placed (Appendix G). We also note that for a Gaussian noise model, the resulting low-rank Gaussian posterior
is in fact the form of the exact posterior distribution (Appendix F). Additionally, since in bGPFA both the
prior over latents and the observation model are GPs, bGPFA is an example of a deep GP (Damianou and
Lawrence, 2013), in this case with two layers that use an RBF kernel and a linear kernel respectively. Finally,
our parameterizations of the posteriors q(xd) and q(fn) can be viewed as variants of the ‘whitening’ approach
introduced by Hensman et al. (2015b) which both facilitates efficient computation of the KL terms in the
ELBOs and also stabilizes training (Section 2.2).

Conclusion In summary, bGPFA is an extension of the popular GPFA model in neuroscience that allows
for regularized, scalable inference and automatic determination of the latent dimensionality as well as the use
of non-Gaussian noise models more appropriate for neural recordings. Importantly, the hyperparameters of
bGPFA are efficiently optimized based on the ELBO on training data which alleviates the need for cross-
validation or complicated algorithms otherwise used for hyperparameter optimization in overparameterized
models (Jensen et al., 2020; Wu et al., 2017; Yu et al., 2009; Keshtkaran and Pandarinath, 2019; Keshtkaran
et al., 2021; Gao et al., 2016). Our approach can also be extended in several ways to make it more useful
to the neuroscience community. For example, replacing the spike count-based noise models with a point
process model would provide higher temporal resolution (Duncker and Sahani, 2018), and facilitate inference
of optimal temporal delays across neural populations (Lakshmanan et al., 2015) which will likely be useful
as multi-region recordings become more prevalent in neuroscience (Keeley et al., 2020). Additionally, by
substituting the linear kernel in p(Y |X) for an RBF kernel in Euclidean space (Wu et al., 2017) or on a
non-Euclidean manifold (Jensen et al., 2020), we can recover scalable versions of recent GPLVM-based tools
for neural data analyses with automatic relevance determination.
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Appendix

A Further analyses of preparatory dynamics in the continuous
reaching task
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Figure 4: Further analyses of M1 preparatory dynamics. (a-d) Similarity matrix of raw neural
activity Y (a & b) and latent states found by FA (c & d) at target onset (a & c) and 75 ms prior to movement
onset (b & d), with analyses performed as in Figure 3f. (e) z-scored similarity as a function of difference in
reach direction; here, the mean similarity across pairs of reaches is shown at target onset (left) and 75 ms
prior to movement onset (right). The bGPFA latent states show much stronger modulation than either raw
neural activity (Y ) or latent states from FA. (f) Modulation of similarity by reach direction as a function
of time from movement onset. Modulation was defined as the difference between maximum and minimum
z-scored similarity as a function of difference in reach direction (peak-to-trough in panel e). Blue solid line
indicates the z-scored hand speed, confirming the absence of premature movement relative to our definition of
movement onset. bGPFA latent similarity increases well before hand speed and starts decreasing substantially
before the hand speed peaks. Dashed lines indicate modulation at target onset for each method.
We performed analyses as in Figure 3f using the raw data (Y ) and using factor analysis (FA) with a latent
dimensionality matched to that inferred by bGPFA instead of using the bGPFA latent states. The raw data
Y showed a high degree of similarity at target onset compared to movement onset, but little discernable
structure as a function of reach direction at either point in time (Figure 4a-b).

While the FA latent distances exhibited no modulation by reach direction at target onset, FA did discover
weak modulation at movement onset (Figure 4a-b). This is qualitatively consistent with our results using
bGPFA but with a lower signal to noise ratio. Here and in Section 3.2, we defined movement onset as the first
time during a reach where the cursor velocity exceeded 0.025ms−1, and we observed little to no quantifiable
movement before this point (Figure 4f). We also discarded ‘trials’ with premature movement for all analyses
here and in Section 3.2, which we defined as reaches with a reaction time of 75 ms or less.

To quantify and compare how neural activity was modulated by the similarity of reach directions for different
analysis methods, we first computed z-scores of the similarity matrices for both the bGPFA latent states,
raw activity, and the latent states from FA. z-scores were calculated as z = (S −mean(S))/std(S) for each
similarity matrix S, and the diagonal elements were excluded for this analysis. We then computed the mean
of the z-scored pairwise similarities as a function of difference in reach direction across all pairs of 681 reaches.
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Figure 5: Further reaction time analyses. (a) Histogram of reaction time across all succesful reaches.
For our correlation analyses, we only considered reaches with a reaction time between 125 ms and 425 ms
(blue vertical lines). (b) Pearson correlations between distance to prep state and reaction time in synthetic
data. Histogram corresponds to correlations between the true reaction times and 50,000 draws from the
learned generative model. Blue dashed line indicates mean across all synthetic datasets (0.028) which is much
smaller than the observed correlation in the experimental data of 0.424 (blue solid line). (c) Histogram of
reach durations for all reaches with a reaction time between 125 ms and 425 ms. (d) Plot of reaction time
against the value of the latent dimension with the longest timescale (τ = 2.1 s) at target onset.

We found that none of the datasets exhibited notable modulation at target onset (Figure 4e). In contrast, the
neural data exhibited modulation by reach similarity 75 ms prior to movement onset. This modulation was
strongest for the bGPFA latent states followed by the FA latents, and the modulation by reach similarity was
very weak for the raw neural activity (Figure 4e). To see how this modulation by reach direction varied as a
function of time from movement onset, we computed the difference between the maximum and minimum of
the modulation curves and repeated this analysis for various delays. We found that the modulation in neural
activity space increased much before any detectable movement, with bGPFA showing the strongest signal
followed by factor analysis and then the raw activity (Figure 4f). Indeed, the bGPFA latent modulation was
maximized at movement onset while the reach speed did not peak until several hundred milliseconds after
movement onset where bGPFA latent trajectories have started to diverge again. Taken together, these results
confirm that our analyses of bGPFA preparatory states do not reflect premature movement onset, and that
they are not artifacts of the temporal correlations introduced by our GP prior since noisier but qualitatively
similar results arise from the use of factor analysis.

B Further reaction time analyses

For analyses of correlations between latent distances and reaction times, we only considered reaches with a
reaction time of at least 125 ms and at most 425 ms which retained 638 of 681 reaches (Figure 5a). This
is because very long reaction times may reflect the monkey not being fully engaged with the task during
those reaches, and very short reaction times may reflect spurious movement. To confirm that our finding of a
strong correlation between latent distance and reaction time in Figure 3g is not an artifact of the temporal
correlations introduced by the bGPFA generative model, we generated a synthetic control. Here we drew
50,000 synthetic latent trajectories from our learned generative model with trajectory durations matched to
those observed experimentally on each trial. We then computed mean preparatory states and latent distances
to preparatory states as in the experimental data (Section 3.2). We found a mean correlation of 0.028 and
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Figure 6: Analyses of a period without task participation. (a) Cursor speed over the course of the
recording session. Blue horizontal lines indicate the last succesful trial before and first succesful trial after a
period with no active task participation (blue shading). (b) Latent similarity matrix as a function of time
during the task. The latent dynamics during task participation occur in a largely orthogonal subspace to the
dynamics during the period with no active task participation. (c) Plot of latent state over time for the latent
dimension with the longest timescale (τ = 2.1 s).

a range of −0.14 to 0.18 in the synthetic data, suggesting that our generative model may introduce weak
correlations between latent distances and reaction times. However, the experimentally observed correlation of
0.424 was much larger than what could be expected by chance, verifying that the distance from the latent
state at target onset to the corresponding preparatory state has behavioral relevance with better initial states
leading to shorter reaction times.

Although we already find a fairly strong relationship between these latent states and reaction times, it is
worth noting that several additional considerations may further improve such predictions. Notably, our
naïve measure of Euclidean latent distances could be improved by instead defining a metric based on the
probabilistic model itself (Tosi et al., 2014). Additionally, while we divide reaches by reach direction, reaches
in the same direction can still have different start and end points on the grid (Figure 3a), leading to different
posture and muscle activations which is likely to significantly affect neural activity. Our analysis by reach
direction therefore only represents a coarse categorization of the rich behavioral space, and it remains to be
seen how neural activity and latent trajectories are affected by e.g. posture during the task.

Finally we considered whether any long-timescale latent dimensions could be predictive of reaction time
across trials by reflecting e.g. motivation or engagement with the task. Here we found that two dimensions
had timescales longer than the duration of most reaches with latent timescales of τ = 2.1 s and τ = 2.0 s
while the majority of reaches had durations between 1 and 2 seconds (Figure 5c). Intriguingly, the latent
state in these dimensions at target onset was predictive of reaction time with correlations of 0.38 and 0.34
respectively (Figure 5d). While the information about reaction time contained in these two dimensions
was largely redundant, it was orthogonal to that encoded by the distance to preparatory state in the fast
dimensions. In particular, a linear model had 18.0% variance explained from the distance to prep in fast
dimensions, 14.7% variance explained from the slowest latent dimension, and 28.2% when combining these
two features which corresponds to 86.5% of the additive value.

C Task engagement

The experimental recordings were characterized by a period of approximately five minutes towards the end of
the recording session during which the monkey did not participate actively in the task and the cursor velocity
was near-constant at zero (Figure 6a). For the decoding analyses, we excluded data from this period since
there was little to no behavior to predict. This period also did not contain any successful reaches, and so
was excluded from the analyses of individual reaches and reaction times in Section 3.2, Appendix A, and
Appendix B.

When analysing neural activity across the periods with and without task participation, we found that
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Figure 7: Neural dimensionality. (a) Participation ratio (Equation 16) as a function of temporal offset
added to M1 spike times in the primate dataset.

neural dynamics moved to a largely orthogonal subspace as the monkey stopped engaging with the task
(Figure 6b). Importantly, we were able to simultaneously capture these context-dependent changes as well as
movement-specific and preparatory dynamics (Section 3.2) by fitting a single model to the full 30-minute
dataset, illustrating the utility of bGPFA for analyses of neural data during unconstrained behaviors. Indeed
when fitting bGPFA only to the neural data recorded before the monkey stopped participating in the task,
our reach-specific analyses gave qualitatively similar results compared to the models fitted to the full dataset.
This suggests that bGPFA can capture behaviorally relevant dynamics within individual contexts even when
trained on richer datasets with changing contexts.

Finally, we wondered how the neural activity patterns during periods with and without task participation
compared to our previous analyses of latent dimensions predictive of task engagement (Appendix B). Here we
found that a long-timescale latent dimension predictive of reaction times for successful reaches (Figure 5) also
exhibited a prominent change to a different state as the monkey stopped participating in the task (Figure 6).
This is consistent with our hypothesis that this latent dimension does indeed capture a feature related to
task engagement which slowly deteriorated during the first 20 minutes of the task followed by a discrete
switch to a state with no engagement in the task. During the period of active task participation, this latent
dimension was also strongly correlated with time within the session. Indeed, reach number and latent state
were both predictive of reaction times, but with the long-timescale latent trajectory exhibiting a slightly
stronger correlation (Pearson ρ = 0.383 vs. ρ = 0.353 respectively). It is perhaps unsurprising that motivation
or task engagement decreases with time, and it is difficult in this case to tease apart exactly how motivation
vs. time is represented in such latent dimensions. However, based on the strong and abrupt modulation by
task participation, this long timescale latent dimension does appear to represent some aspect of engagement
with the task beyond being a simple measure of time.

D Latent dimensionality

In this section we estimate the dimensionality of the primate data as a function of the offset between M1 and
S1 spike times using participation ratios computed on the basis of PCA. The participation ratio is defined as

PR =
(∑

i

λi

)2

/
∑
i

λ2
i , (16)

where λi is the ith eigenvalue of the covariance matrix Y Y T . Here we find that the dimensionality of the
data is minimized for a spike time shift of 75-100 ms (Figure 7). This suggests that the neural recordings can
be explained more concisely when taking into account the offset in decoding between M1 and S1 which is
consistent with the increased log likelihood after shifting the M1 spikes (Section 3.2). We observe a similar
trend when considering the number of dimensions retained by bGPFA (21.9± 0.30 vs 22.3± 0.38 across 10
model fits with and without a 100 ms shift of M1 spiketimes), although the difference is small enough to not
be statistically significant in this case. However, it is worth noting that bGPFA explains the data with only a
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handful of latent dimensions, and this is much lower than the dimensionality of 127-129 estimated by the
participation ratio which tends to increase for noisier datasets.

E Parameterizations of approximate GP posterior

In this section, we compare different forms of the variational posterior q(X) discussed in Section 2.2. For
factorizing likelihoods, the optimal posterior takes the form

q(xd) ∝ p(x)
∏
t

N (xt|gt, vt), (17)

where gt and vt are variational parameters (Opper and Archambeau, 2009). Equation 17 might therefore seem
to be an appropriate form of the variational distribution q(X). However, this formulation is computationally
expensive and the likelihood p(Y |X) does not factorize across time in bGPFA.

Instead, we therefore consider approximate parameterizations of the form

q(xd) = N (µd,Σd) (18)

µd = K
1
2
d νd (19)

Σd = K
1
2
d ΛdΛ

T
dK

1
2
d , (20)

where K
1
2
d is a matrix square root of the prior covariance matrix Kd and νd ∈ RT is a vector of variational

parameters. This formulation simplifies the KL divergence term for each latent dimension in Equation 6 from

KL[q(xd)||p(xd|t)] = 1
2
(
Tr(K−1

d Σd) + log |Kd| − log |Σd|+ µTdK−1
d µd − T

)
(21)

to
KL[q(xd)||p(xd|t)] = 1

2
(
‖Λd‖2

F − 2 log |Λd|+ ||νd||2 − T
)
. (22)

In the following, we drop the ·d subscript to remove clutter, and we use the notation Ψ = diag(ψ1, ..., ψT )
with positive elements ψt > 0, to denote a positive definite diagonal matrix.

E.1 Square root of the prior covariance

For a stationary prior covariance K, we can directly parameterize K 1
2 by taking the square root of k(·, ·) in

the Fourier domain and computing the inverse Fourier transform. For the RBF kernel used in this work we
get

k(ti, tj) = exp
(
− (ti − tj)2

2τ2

)
(23)

k
1
2 (ti, tj) =

(
2
π

) 1
4
(
δt

τ

) 1
2

exp
(
− (ti − tj)2

τ2

)
. (24)

In this expression, δt is the time difference between consecutive data points, we have assumed a signal variance
of 1 in the prior kernel, and we note that our parameterization only gives rise to the exact matrix square root
of the RBF kernel in the limit where T � τ . Note that this is the case in the present work since T ≈ 30
minutes is much larger than the longest timescales learned by bGPFA (τ ≈ 2 s). For most experiments in
neuroscience, observations are binned such that time is on a regularly spaced grid and our parameterization
can be applied directly. In other cases, kernel interpolation should first be used to construct a covariance
matrix with Toeplitz structure (Wilson and Nickisch, 2015; Wilson et al., 2015).
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E.2 Parameterization of the posterior covariance

We now proceed to describe the various parameterizations of Λ whose performance is compared in Figure 8.
Other parameterizations are explored in Challis and Barber (2013).

Diagonal Λ We parameterize each latent dimension with Λ = Ψ. This gives rise to a KL term:

2KL[q(x)||p(x)] =
∑
t

ψ2
t + ||ν||2 − T − 2

∑
t

logψt. (25)

We can compute Λv in linear time since Λ is diagonal which allows for cheap (differentiable) sampling:

η ∼ N (0, I) (26)

sample = K
1
2 (Λη + ν), (27)

where the multiplication by K 1
2 is done in O(T log T ) time in the Fourier domain.

Circulant Λ We parameterize each latent dimension with Λ = ΨC. Here, C ∈ RT×T is a positive definite
circulant matrix with 1 + T

2 (integer division) free parameters, which we parameterize directly in the Fourier
domain as ĉ = rfft(c) ∈ R1+T/2 where c is the first column of C with ĉ ≥ 0 elementwise. We compute the
KL as

2KL[q(x)||p(x)] =
(∑

t

c2
t

)(∑
t

ψ2
t

)
+ ||ν||2 − T − 2

∑
t

logψt − 2 log |C| (28)

log |C| = log ĉ1 + log ĉT
2 +1 + 2

T
2∑
i=2

log ĉi (even T) (29)

log |C| = log ĉ1 + 2
T +1

2∑
i=2

log ĉi (odd T), (30)

where c = irfft(ĉ). We can sample differentiably in O(T log T ) time by computing

η ∼ N (0, I) (31)
Cη = irfft(ĉ� rfft(η)) (32)

sample = K
1
2 (ΨCη + ν), (33)

where � denotes the complex element-wise product.

Low-rank Λ We let Q ∈ QT×r with QTQ = Ir and write

Λ = IT −QΨQT , (34)

where we now constrain 0 < ψi < 1 to maintain the positive definiteness of Λ. Technically, keeping Q on the
Stiefel manifold (i.e. QTQ = Ir) is done by (differentiably) computing the QR decomposition of a T × r
matrix of free parameters.

Circulant inverse Λ We let C be a circulant positive definite matrix as above and parameterize

Λ = (I + ΨCΨ)−1
. (35)

Computing Λv products is done using the conjugate gradients algorithm, taking advantage of fast products
with Ψ and C; the same algorithm is also used to stochastically estimate log |Λ| and its gradient (see the
appendix of Rutten et al., 2020).
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Figure 8: Comparisons of different forms
of the approximate posterior q(x). (a) Syn-
thetic data (orange dots) plotted together with
the exact posterior (black) as well as the vari-
ational posteriors inferred by each whitened
parameterization. The solid lines denote the
(approximate) posterior means, and shaded
areas indicate ±1 posterior standard devia-
tions. (b) Slice through the posterior covariance
(Covx∼q(x)

[
xT/2, xt

]
) for the true posterior (top

and black dotted lines) and the approximate meth-
ods. Each method has different characteristics
and the circulant parameterization again provides
a good qualitative fit at very low computational
cost. (c) We defined the ‘ELBO gap’ of each
method as ELBO−LL where LL is the true data
log likelihood. We plotted this against the time
per gradient evaluation and found that the cir-
culant parameterization achieved high accuracy
with cheap gradients.

Toeplitz inverse Λ This proceeds just as for the circulant inverse form, with the circulant matrix C
replaced by an arbitrary Toeplitz matrix (also exploiting fast Tv products):

Λ = (I + ΨTΨ)−1
. (36)

E.3 Numerical comparisons between different parameterizations

To compare these parameterizations, we generated a synthetic dataset (Figure 8a, orange dots) over T = 1000
time bins by drawing samples {y1, . . . , yT } as yt = xt + σtξt where ξ(t) ∼ N (0, 1) with non-stationary σt
growing linearly from 0.1 to 0.5 over the whole range 0 ≤ t < T , and xi ∼ N (0,K1/2K1/2) with K1/2 given
by Equation 24. We fixed these generative parameters to their ground truth and optimized the ELBO w.r.t.
the variational parameters in this simple regression setting. We found that all of the parameterizations
accurately recapitulated the GP posterior mean (Figure 8a). However, the degree to which they captured
the non-stationary posterior covariance and data log likelihood varied between methods (Figure 8b-c). To
quantify this, we computed the difference between the asymptotic ELBO of each method and the exact log
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marginal likelihood. This ELBO gap was small for the circulant parameterization, the inverse methods, and
the low rank parameterization with sufficiently high r. Although the circulant parameterization did not fully
capture the non-stationary aspect of the posterior variance, this did not affect the ELBO gap substantially;
importantly, however, the circulant parameterization was more than an order of magnitude faster per gradient
evaluation than the other methods with comparable accuracy (Figure 8c). For these reasons as well as the
good performance in a latent variable setting (Section 3.1, Section 3.2), we used the circulant parameterization
for all experiments.

F Relation between variational posterior over F and true poste-
rior

Here we show that our parameterization of q(fn) includes the exact posterior in the case of Gaussian noise.

When the noise model is Gaussian (i.e., p(yn|fn) = N (y|fn, σ2
nI)), we can compute the posterior over

f∗n = fn(X?) at locations X? in closed form:

f∗n|X?,X,yn ∼ N (X?TS2XK̂−1yn,X
?TS(I −XK̂−1XT )SX?) (37)

where K̂ = XTS2X + σ2
nI. Note that the posterior is low-rank as the rank of I −XK̂−1XT is at most D.

This means that when we do variational inference, we can parameterize our approximate posterior as:

q(f∗n) = N (f |X?TSνn,X
?TSLnL

T
nSX

?) (38)

where νn ∈ RD and Ln ∈ RD×D are the parameters of the approximate posterior (Section 2.2). We see that
this parameterization is exact when:

νn = SXK̂−1yn (39)
LnL

T
n = I −XK̂−1XT . (40)

Note that the right-hand side of Equation 40 is guaranteed to be positive definite because the true posterior
must be positive definite. Importantly, for this parameterization, the KL term in Equation 11 simplifies to

KL(q(fn|X)||p(fn|X)) = KL(N (νn,LnLTn )||N (0, I)), (41)

which is independent of X and allows us to do efficient inference due to the low dimensionality of νn and Ln.

G Relation between variational posterior over F and SVGP

For general non-Gaussian noise models, the parameterization in Appendix F will no longer be exact. However,
here we show that it is in this case equivalent to a stochastic variational Gaussian process (SVGP; Hensman
et al., 2013). In SVGP, we choose a variational distribution:

q(u) = N (u|ZTSµ,ZTSMMTSZ) (42)

at inducing points Z ∈ RD×m, where µ and M are the “whitened” parameters (Hensman et al., 2015). This
gives an approximate posterior:

q(f∗) = Eq(u) [p(f |u)] (43)
= N (f |X?TSΠzµ;X?TSΠz(MMT − I)ΠzSX

?) (44)

where Πz = SZ(ZTS2Z)−1ZTS. If we choose m = D inducing points such that Z ∈ RD×D and make sure
Z has full rank, then Πz = I and thus

q(f∗) = N (f |X?TSµ,X?TS(MMT − I)SX?). (45)
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We recover the parameterization in Section 2.2 when

µ = ν and MMT − I = LLT . (46)

For these more general noise models, the whitened parameterization of q(f) still gives rise to a computationally
cheap KL divergence that is independent of X as in Equation 41:

KL(q(fn|X)||p(fn|X)) = KL(N (νn,LnLTn )||N (0, I)). (47)

In summary, we have shown that (i) our parameterization of q(fn) has sufficient flexibility to learn the true
posterior when the noise model is Gaussian (Appendix F), and (ii) it is equivalent to performing SVGP where
the locations of the inducing points do not matter provided that their rank is at least as high as the number
of latent dimensions.

H Automatic relevance determination

Here we briefly consider why introducing a prior over the factor matrix enables automatic relevance determi-
nation. These ideas reflect results by Bishop (1999) and in Section 3.1.

For simplicity, we will first consider the case of factor analysis where p(X) =
∏
d,tN (xdt; 0, 1). This gives

rise to a marginal likelihood (with Gaussian noise) equal to

log p(Y ) =
∑
t

logN (yt; 0,CCT + Σ), (48)

where Σ = diag(σ2
1 , ..., σ

2
N ) is a diagonal matrix of noise parameters. It is in this case quite clear that the

optimal marginal likelihood is a monotonically increasing function of the latent dimensionality, since any
marginal likelihood reachable with a certain rank D is also reachable with a larger rank D′ > D; increasing
D can only increase model flexibility. We could in this case threshold the magnitude of the columns of C to
subselect more ‘informative’ dimensions, but this is not inherently different from putting an arbitrary cut-off
on the variance explained in PCA, and there is no Bayesian “Occam’s razor” built into the method (MacKay,
2003).

Consider now the case where we put a unit Gaussian prior on cnd. In this case {cnd} are no longer parameters
of the model, but rather latent variables to be inferred which intuitively should reduce the risk of overfitting.
To expand on this intuition, consider the ELBO (c.f. Section 2.1) that results from introducing such a prior
over cnd:

log p(Y ) ≥ Eq(X) [log p(Y |X)]−
∑
d,t

KL [q(xdt)||N (0, 1)] (49)

log p(Y |X) =
∑
n

logN (yn; 0,XTX + σnI). (50)

Here we see that if a dimension d is truly uninformative, it should have xdt = 0 ∀t to avoid contributing noise
to the likelihood term via XTX. However, reducing this noise will increase the prior KL term, driving it to
infinity in the limit of zero noise since the variational posterior over the dth latent at time t, q(xdt), is in
this case a delta function at zero. Optimizing the ELBO therefore involves a balance between mitigating the
noise induced by XTX and reducing the KL penalty, with both of these terms contributing to a decreased
ELBO compared to the model without uninformative dimensions. Thus the prior over cnd counteracts the
overfitting that would normally occur when increasing the latent dimensionality in classical factor analysis,
and this Bayesian treatment will lead to a decrease in the ELBO with increasing dimensionality beyond the
optimal D? that is needed to adequately explain the data.

Finally let us consider the case where we learn the prior scale of the factor matrix such that cnd ∼ N (0, s2
d)

with sd optimized w.r.t. the ELBO. Critically, the likelihood term now becomes:

log p(Y |X) =
∑
n

logN (yn; 0,XTS2X + σnI). (51)
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with S = diag(s1, . . . , sD). In this case, adding uninformative dimensions beyond the optimal D? still cannot
increase the ELBO (in the limit of large N). However, letting sd → 0 for these superfluous dimensions will
prevent them from contributing to p(Y |X), thus allowing q(xdt)→ N (0, 1) to drive the prior KL term to
zero for these dimensions. In this limit, we recover both the ELBO and the posteriors associated with the
D?- dimensional model. We thus have a built-in Occam’s razor which will shave off any uninformative latent
dimensions, and these will be identifiable as dimensions for which sd ≈ 0 and q(xdt) ≈ N (0, 1).

These ideas generalize to GPFA where the posterior over latents will instead approach the GP prior
q(xd) ≈ N (0,K) for uninformative dimensions. This corresponds to the limit of ν → 0 and Ψ → I in
our circulant parameterization in Section 2.2 and Appendix E. In all of our simulations, we found a clear
clustering of dimensions after training with some clustered near zero sd, and others clustered with much larger
sd (Figure 2c and Figure 3b). Note that in practice we do not actively truncate the model by discarding
dimensions with sd ≈ 0 but merely use the terminology to indicate that these dimensions have negligible
contributions to the posterior predictive q(yn), as well as to the latent posteriors q(xd) for the dimensions
with large sd.

I Most informative dimensions

In this work, we refer to the latent dimensions with the highest values of sd as the ‘most informative
dimensions’. We do this because (i) observing the value of the corresponding latent xd decreases the variance
of the expected distribution of neural activity more as sd increases, and (ii) the Fisher information of xd
increases as sd increases.

To show this, we consider how the distribution over fn (the activity of neuron n) given cn (the nth row of C)
changes when xd (the value of the dth latent) is known, and how this varies with sd. In the following, we
omit the ·n subscript for notational simplicity, and we note that f , xd and cd are all scalar values. With
unknown xd, f is Gaussian with zero mean and variance Ep(x)

[
cTxxT c

]
= cT c. Thus,

p(f |c) = N (f ; 0, cT c) (52)

In contrast, for known xd, we have

p(f |c, xd) = N (f ; cdxd, cT−dc−d), (53)

where c−d is c with the dth element removed. We thus see that the decrease in variance of f from observing
xd is c2

d. Finally we can approximate the process of averaging this quantity over neurons by noting that
cd ∼ N (0, s2

d) and marginalising out c:

Ep(c)[σ2
f |c − σ

2
f |c,xd

] = Ep(c)[c2
d] = s2

d, (54)

where σ2
f |c is the variance of p(f |c). Thus, s2

d can be interpreted as the expected decrease in the variance of
the denoised neural activity f when learning the value of the dth latent.

This can also be understood in information-theoretic terms by considering the Fisher information of the dth
latent dimension which is given by

I(xd|c) = −Ep(f |xd,c)

[
∂2

∂x2
d

log p(f |xd, c)
]

(55)

=

∑
d′ 6=d

c2
d′

−1

. (56)

To relate this quantity to our prior scale parameters {sd}, we consider the expectation of the inverse Fisher
information:

Ep(c)[I(xd|c)−1] =
∑
d′ 6=d

s2
d′ . (57)
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For a given set of latent dimensions [1, D] with corresponding {sd}D1 , we thus see that the expected inverse
Fisher information is minimized for the dimension with the highest value of sd. In Figure 2 and Figure 3 we
use sd together with the posterior latent mean parameters νd to identify ‘discarded’ dimensions.

J Noise models and evaluation of their expectations

Gaussian The Gaussian noise model is given by

log p(ynt|fnt) = −1
2 log(2π)− 1

2(ynt − fnt)2/σ2
n, (58)

where σn is a learnable parameter. In this case we can easily compute the expected log-density under the
approximate posterior analytically:

Eq(fnt|X) [log p(ynt|fnt)] = −1
2

(
log(2π) + (ynt − µnt)2 + Σntt

σ2
n

)
, (59)

where q(fn|X) = N (fn;µn,Σn) and Σntt is the approximate posterior variance of neuron n at time t (i.e.,
the tth diagonal element of Σn).

Poisson The Poisson noise model is given by

log p(ynt|fnt) = ynt log g(fnt)− g(fnt)− log(ynt!), (60)

where g is a link function. If we choose an exponential link function (i.e., g(x) = exp(x)), we can compute in
closed-form the expected log-density of the approximate posterior as:

Eq(fnt|X) [log p(ynt|fnt)] = Eq(fnt|X) [yntfnt − exp(fnt)− log(ynt!)] (61)

= yntµnt − exp
(
µnt + 1

2Σntt
)
− log(ynt!). (62)

For the analyses shown in Figure 2c-d, we use the exponential link function.

For general link functions g, we may not be able to evaluate the expected log-density in closed-form. In this
case, we approximate it with Gauss-Hermite quadrature:

Eq(fnt|X) [log p(ynt|fnt)] ≈
1√
π

kGH∑
i=1

ωi log p(ynt|f (i)
nt ) (63)

where

ωi = 2kGH−1kGH!
√
π

kGH
2[HkGH−1(ri)]2

, (64)

f
(i)
nt =

(√
2Σntt

)
ri + µnt, (65)

Hk(r) are the physicist’s Hermite polynomials, and ri with i = 1, . . . , k are roots of Hk(r). For a given order
of approximation kGH, we can evaluate both ωi and ri using standard numerical software packages such as
Numpy. In practice, we find that kGH = 20 gives an accurate approximation to the expected log-density
under the approximate posterior. Note that we could also estimate the expectation over q(fnt) for general
link functions g using a Monte Carlo estimate, but we use Gauss-Hermite quadrature in this work since it
has a lower computational cost and is not stochastic.
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Negative binomial The negative binomial noise model is given by

log p(ynt|fnt) = log
(
ynt + κn − 1

ynt

)
+ κn log (1− g(fnt)) + y log (g(fnt)) , (66)

where g(fnt) denotes the probability of success in a Bernoulli trial. Here, each success corresponds to the
emission of one spike in bin t, and thus p(ynt|fnt) is the distribution over the number of successful trials
(spikes) before reaching κn failed trials. The link function g(x) : R→ [0, 1) maps fnt to a real number between
0 and 1. In practice we use a sigmoid link-function g(x) = 1/(1 + exp(−x)).

In this model, κn is a learnable parameter which effectively modulates the overdispersion of the distribution
since the mean and variance of p(ynt|fnt) are given by:

µNB = g(fnt)κn
1− g(fnt)

(67)

σ2
NB = µNB

(
1 + µNB

κn

)
. (68)

This is the parameter which we compare between the ground truth and trained models in Figure 2, and we
see that the Poisson model is recovered for neuron n as κn →∞.

For the negative binomial noise model we cannot compute the expected log-density in closed-form. We instead
approximate this expectation using Gauss-Hermite quadrature as described above.

K Implementation

In this section we provide pseudocode for bGPFA (Algorithm 1) with the circulant parameterization for q(X)
and discuss other implementation details.

Note that we need to sample the full trajectory xd before subsampling for each batch due to the correlations
introduced by K. In practice, we run the optimization for 2500 passes over the full data which we found
empirically lead to convergence of the ELBO and parameters. We used M = 20 Monte Carlo samples for
each update step when fitting the synthetic data in Figure 2 and M = 10 for the primate data. For all
models, q(X) was initialized at the prior p(X). The prior scale parameters were initialized as sd = ρ||cd||22
where cd is the dth row of the factor matrix C found by factor analysis (Pedregosa et al., 2011) and ρ = 3
was found empirically to give good convergence on the primate data. When using a Gaussian noise model,
noise variances were initialized as the σ2

n found by factor analysis. For negative binomial noise models, we
initialized κn = 1

T

∑
t ynt which matches the mean of the distribution to the data for f = 0. Length scales

τ were initialized at 200 ms for all latent dimensions for the primate data and at ≈ 80% of the ground
truth value for the synthetic data. Synthetic data was fitted on a single GPU with 8GB RAM. Primate
data was fitted on a single GPU with 12GB RAM and took approximately 30 hours for a single model fit to
the full dataset at 25 ms resolution. We also note that when fitting data with a Gaussian noise model, we
mean-subtracted the original data, whereas we include explicit mean parameters in the Poisson and negative
binomial noise models since they are non-linear (c.f. Appendix J).

L Cross-validation and kinematic decoding

In this section we describe the procedure for computing cross-validated errors in Figure 2 and performing
kinematic decoding analyses in Figure 3. In these analyses, expectations over X were computed using the
posterior mean of q(X) and expectations over F were computed using Monte Carlo samples from q(F ).

Prediction errors To compute cross-validated errors we divide the time points into a training and a test
set, Ttrain = {t1, t2, ..., tTtrain

} and Ttest = {tTtrain+1, ..., T}, and similarly for the neurons Ntrain and Ntest.
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Algorithm 1: Bayesian GPFA with automatic relevance determination
1 input: data Y ∈ RN×T , maximum latent dimensionality D, # of Monte Carlo samples M , learning

rate γ
2 parameters: θ = {{sd}D1 , {τd}D1 , {νd}D1 , {c̃d}D1 , {Ψd}D1 , {Ln}N1 , {ν̂n}N1 , {σ̂n or κn}N1 }
3
4 while not converged do
5 ∇L ← 0
6 for batch in batches do
7
8 %For each of M Monte Carlo samples
9 for m = 1 : M do

10
11 % sample from approximate posterior q(X)
12 for d = 1 : D do
13 η

(m)
d ∼ N (0, IT )

14 k
1
2
d = σ 1

2 ,d
exp

(
− (t−t0)2

2τ2
1
2 ,d

)
// single column of K

15 x
(m)
d = Toeplitz_mult(k

1
2
d ,νd +Cη(m)

d ) // Appendix E

16 Xm = [x(m)
1 ; . . . ;x(m)

d ]
17
18 % compute q(F ) and Eq(F ) [p(Y |F )]
19 µ̂n = X>mν̂n // variational mean
20 σ̂2

n = diag
(
XT
mSLnL

>
nSXm

)
21 log p(m)

Y F =
∑
n,t∈batch EN (fnt;µ̂nt,σ̂2

nt) [log p(ynt|fnt)] // Appendix J

22
23 % compute KL terms
24 KLx = size(batch)

size(data)
∑
dKL[q(xd)||p(xd)] // Appendix E

25 KLf = size(batch)
size(data)

∑
nKL[q(fn)||p(fn)] // Appendix F

26
27 % update gradient with batch gradient
28 L̃ = 1

M

∑
m log p(m)

Y F −KLx −KLf
29 ∇L ← ∇L+∇L̃
30

31 % update parameters based on total gradients (we use Adam in practice)
32 θ ← θ + γ∇L

We also define Ttot = Ttrain
⋃
Ttest and Ntot = Ntrain

⋃
Ntest. We first fit the generative parameters θgen of

each model to data from all the neurons at the training time points using variational inference:

θgen = argmaxθgen
[p(YNtot,Ttrain

|θgen)] . (69)

We then fix the generative parameters and infer a distribution over latents from the training neurons recorded
at all time points using a second pass of variational inference:

q(X1:D,Ttot |YNtrain,Ttot , θgen) ≈ p(X1:D,Ttot |YNtrain,Ttot , θgen). (70)

Finally we use the inferred latent states and generative parameters to predict the activity of the test neurons
at the test time points

ŶNtest,Ttest
=
∫
Y p(YNtest,Ttest

|X1:D,Ttest
, θgen)q(X1:D,Ttest

|YNtrain,Ttot
, θgen)dX1:D,Ttest

(71)
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This allows us to compute a cross-validated predictive mean squared error as

ε = 1
|Ntest| |Ttest|

||ŶNtest,Ttest
− YNtest,Ttest

||22. (72)

Kinematic decoding For kinematic decoding analyses, we only considered the latents and behavior prior
to a period of approximately 5 minutes where the monkey disengaged from the task (the first 1430 seconds;
Appendix C). Cursor positions in the x and y directions were first fitted with cubic splines and velocities
extracted as the first derivative of these splines. To evaluate kinematic decoding performance, we followed
Keshtkaran et al. (2021) and computed the expected activity of all neurons at all time points under our
model:

Ŷ =
∫
Y p(Y |F )q(F |X)q(X|t)dXdF . (73)

This can be viewed as the first non-linear step of a decoding model from the latent states X. We then
performed 10-fold cross-validation where 90% of the data was used to fit a ridge regression model which
was tested on the held-out 10% of the data. The regularization strength was determined using 10-fold
cross-validation on the 90% training data. The predictive performance was computed as the mean across
the 10 folds. Models were fitted and evaluated independently for the hand x and y velocities, and the final
performance was computed as the mean variance accounted for across these two dimensions. Results in
Section 3.2 are reported as mean ± std across 10 different splits of the data into folds used for cross-validation.
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